271 research outputs found

    From quantum trajectories to classical orbits

    Get PDF
    Recently it has been shown that the evolution of open quantum systems may be ``unraveled'' into individual ``trajectories,'' providing powerful numerical and conceptual tools. In this letter we use quantum trajectories to study mesoscopic systems and their classical limit. We show that in this limit, Quantum Jump (QJ) trajectories approach a diffusive limit very similar to the Quantum State Diffusion (QSD) unraveling. The latter follows classical trajectories in the classical limit. Hence, both unravelings show the rise of classical orbits. This is true for both regular and chaotic systems (which exhibit strange attractors).Comment: 7 pages RevTeX 3.0 + 2 figures (postscript). Submitted to Physical Review Letter

    Nonergodic Behavior of Interacting Bosons in Harmonic Traps

    Full text link
    We study the time evolution of a system of interacting bosons in a harmonic trap. In the low-energy regime, the quantum system is not ergodic and displays rather large fluctuations of the ground state occupation number. In the high energy regime of classical physics we find nonergodic behavior for modest numbers of trapped particles. We give two conditions that assure the ergodic behavior of the quantum system even below the condensation temperature.Comment: 11 pages, 3 PS-figures, uses psfig.st

    Percolation in the classical blockmodel

    Full text link
    Classical blockmodel is known as the simplest among models of networks with community structure. The model can be also seen as an extremely simply example of interconnected networks. For this reason, it is surprising that the percolation transition in the classical blockmodel has not been examined so far, although the phenomenon has been studied in a variety of much more complicated models of interconnected and multiplex networks. In this paper we derive the self-consistent equation for the size the global percolation cluster in the classical blockmodel. We also find the condition for percolation threshold which characterizes the emergence of the giant component. We show that the discussed percolation phenomenon may cause unexpected problems in a simple optimization process of the multilevel network construction. Numerical simulations confirm the correctness of our theoretical derivations.Comment: 7 pages, 6 figure

    Methane Flux in Cropland and Adjacent Riparian Buff ers with Different Vegetation Covers

    Get PDF
    While water quality functions of conservation buffers established adjacent to cropped fields have been widely documented, the relative contribution of these re-established perennial plant systems to greenhouse gases has not been completely documented. In the case of methane (CH(4)), these systems have the potential to serve as sinks of CH(4) or may provide favorable conditions for CH(4) production. This study quantifies CH(4) flux from soils of riparian buffer systems comprised of three vegetation types and compares these fluxes with those of adjacent crop fields. We measured soil properties and diel and seasonal variations of CH(4) flux in 7 to 17 yr-old re-established riparian forest buffers, warm-season and cool-season grass filters, and an adjacent crop field located in the Bear Creek watershed in central Iowa. Forest buffer and grass filter soils had significantly lower bulk density (P \u3c 0.01); and higher pH (P \u3c 0.01), total carbon (TC) (P \u3c 0.01), and total nitrogen (TN) (P \u3c 0.01) than crop field soils. There was no significant relationship between CH(4) flux and soil moisture or soil temperature among sites within the range of conditions observed. Cumulative CH(4) flux was -0.80 kg CH(4)-C ha(-1) yr(-1) in the cropped field, -0.46 kg CH(4)-C ha(-1) yr(-1) within the forest buffers, and 0.04 kg CH(4)-C ha(-1) yr(-1) within grass filters, but difference among vegetation covers was not significant. Results suggest that CH(4) flux was not changed after establishment of perennial vegetation on cropped soils, despite significant changes in soil properties

    Self-limiting atmospheric lifetime of environmentally reactive elements in volcanic plumes

    Get PDF
    The 2018 eruption of Kīlauea, Hawai’i, produced exceptionally high discharge of metal pollutant elements, and an unprecedented opportunity to track them from vent to exposed communities over 200 km downwind. We discovered that magmatic volatility is an important control on the atmospheric behavior of elements, with [volatile elements] decreasing up to 100 times faster after emission than [refractory elements]. The differential deposition disproportionately impacts populated areas closest to the active vents, as the rapidlydeposited volatile elements generally have the highest environmental lability and potential toxicity

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch
    corecore